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The assembling and self-association of anionic [Au(CN)2]¹

spatially along cationic ¢-sheeted poly-L-lysine, P(Lys), through
electrostatic interaction was demonstrated to form luminescent
[Au(CN)2]¹ aggregates, wherein negatively charged [Au(CN)2]¹

was found to stabilize the ¢-sheet structure by suppressing
repulsion between the positively charged side chains.

Luminescent properties of closed shell d10 gold(I) com-
plexes have attracted much attention because a closed shell d10

configuration does not allow low-lying dd excited states.1

Gold(I) complexes are known to aggregate through d10£d10

closed shell aurophilic bonding interaction,1c,2 which plays an
important role in determining aggregated structures and lumi-
nescence properties.1a,1c,1d,3 The emission of [Au(CN)2]¹ in
aqueous media has been demonstrated to be tunable based on the
aggregation of [Au(CN)2]¹ through aurophilicity although high
concentration (²10¹2M) is required to exhibit luminescence at
ambient temperature.4 On the other hand, the utilization of
polyelectrolytes as scaffolds has been recognized to be a reliable
strategy for assembling opposite-charged functional moieties.5

Anionic polyelectrolytes have been demonstrated to induce the
aggregation of positively charged platinum(II) complexes,
leading to luminescence change resulting from the metalmetal
and ³³ interactions.5d5f We have also demonstrated that
redox-active ferrocenes bearing a long alkylene chain are
aggregated along the backbone of anionic double helical
DNA, presenting a redox-active (outer) and hydrophobic (inner)
sphere around the double helical core.6 Poly-L-lysine (P(Lys))
exists in a random coil conformation at neutral pH due to the
repulsion between the positively charged side chains and an ¡-
helical conformation at above pH 10.6 due to the reduced charge
on the side chains at a pH above the pKa (10.5). Above pH 10.6,
increasing temperature induces the transformation of an ¡-
helical conformation into a ¢-sheet structure, which is stabilized
by hydrophobic interaction between the side chains.7 P(Lys)
bearing multiple positively charged side chains is envisioned to
serve as a spatially aligned polymeric scaffold for the aggrega-
tion and self-association of negatively charged [Au(CN)2]¹

through electrostatic interaction. Also, aggregation of negatively
charged [Au(CN)2]¹ might influence the secondary structure of
P(Lys) resulting from the stabilization of positive charges. From
these points of view, we embarked upon the assembling and
self-association of anionic [Au(CN)2]¹ spatially along cationic
¢-sheeted P(Lys) to form luminescent [Au(CN)2]¹ aggregates
(Figure 1).

P(Lys)-induced aggregation and self-association of
[Au(CN)2]¹ were investigated by UVvis spectroscopy. Addi-
tion of P(Lys) (MW >8000 as obtained from PEPTIDE
INSTITUTE, INC.) to a 1.0 © 10¹3M ultrapure water solution
of K[Au(CN)2] exhibited the appearance of a new lower-energy

absorption shoulder in the region of approximately 250300 nm,
and an increase in the ratio of the Lys unit to K[Au(CN)2]
resulted in a gradual increase of the shoulder peak in the UVvis
spectra (Figure 2a). These observations indicate the oligomeri-
zation of [Au(CN)2]¹ through electrostatic interaction with
positively charged side chains and aurophilicity.

Circular dichroism (CD) spectrometry is a useful tool to
determine an ordered structure in solution. The CD spectrum of
P(Lys) in an ultrapure water solution at 298K indicates a random
coil conformation due to the electrostatic repulsion between the
positively charged side chains (Figure 2b). With an increase in
the ratio of K[Au(CN)2] to the Lys unit, an induced circular
dichroism (ICD) at around 230 and 240 nm from the absorbance
region of [Au(CN)2]¹ appeared and became more negative as
shown in Figure 2b, which indicates the assembling of anionic
[Au(CN)2]¹ spatially around the backbone of cationic P(Lys).
Furthermore, an increase in the ratio of K[Au(CN)2] caused the
intensity increase of a negative peak at around 212 nm although
an ICD at around 230 and 240 nm was hardly changed. This
result suggests the conformational change from the random coil
to the ¢-sheet structure.7 The aggregation of negatively charged
[Au(CN)2]¹ through the electrostatic interaction is thought to
stabilize the ¢-sheet structure by suppressing repulsion between
positively charged side chains. It is well known that biological
activities of the proteins are closely related to the conformation,
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Figure 1. Schematic representation of P(Lys)-induced aggre-
gation and self-association of [Au(CN)2]¹.
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wherein secondary structures such as ¡-helices, ¢-sheets, and ¢-
turns play an important role in protein folding. To the best of our
knowledge, the stabilization of the ¢-sheet structure of P(Lys) by
using negatively charged metal aggregates has not been reported
although anionic surfactants have been demonstrated to induce
the conformational change of P(Lys).8

P(Lys)-induced luminescence arising from aggregated
[Au(CN)2]¹ was observed by the addition of P(Lys) to a 5.0 ©
10¹3M ultrapure water solution of K[Au(CN)2]. The excita-
tion and emission spectra of K[Au(CN)2] with P(Lys) (Lys
unit:K[Au(CN)2] = 1:1) are shown in Figure 2c. Such lumines-
cence was not detected in the absence of P(Lys). The influence
of the ratio of the Lys unit to K[Au(CN)2] on the self-association
of anionic [Au(CN)2]¹ was studied (Figure 3a). It is noteworthy
that addition of 0.2 to 1 molar equivalents of the Lys unit of
P(Lys) to K[Au(CN)2] led to a gradual increase of the emission
intensity and a slight blue shift of the emission band. Further
addition of P(Lys) (1 to 5 molar equivalents of the Lys unit)
caused a decrease in the emission intensity with a continuous
blue shift of the emission band. The emission band of
[Au(CN)2]¹ is known to be red-shifted resulting from the
oligomerization by increased concentration.4 When P(Lys)
loading per K[Au(CN)2] is lowered, the ratio of [Au(CN)2]¹

aggregates around the backbone of cationic P(Lys) is increased,

which induces a red shift of the emission band. However, the
emission intensity might be decreased because of the lowered
ratio in complexation. High loading of P(Lys) per K[Au(CN)2]
would lead to the arrangement of [Au(CN)2]¹ separately to the
backbone of cationic P(Lys), which prevents the aggregation,
causing the blue shift of the emission band and a decrease in the
emission intensity. A gradual blue shift of the excitation band
was observed by the continuous addition of P(Lys) (Figure 3a).
The order of the emission intensity is consistent with the
intensity of a new lower-energy absorption shoulder at around
280 nm (Figure 2a). These results support the P(Lys)-induced
self-association and luminescence of [Au(CN)2]¹.

A red shift of the emission band and a gradual increase
in the emission intensity were observed as the amount of
K[Au(CN)2] increased as shown in Figure 3b, indicating the
aggregation of anionic [Au(CN)2]¹ around the backbone of
cationic P(Lys). From the above-mentioned results, the aggre-
gation and self-association of [Au(CN)2]¹ are envisioned to be
tunable by changing the polypeptide chain length. In fact, the
luminescent properties of [Au(CN)2]¹ distinctly depends on the
polypeptide chain length in the emission spectra of K[Au(CN)2]
in the presence of P(Lys) with various chain lengths (Figure 3c).
With P(Lys) (MW 5002000) or P(Lys) (MW 10005000), a
weak emission was observed probably due to the low aggrega-
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Figure 2. (a) UVvis spectra of K[Au(CN)2] (1.0 © 10¹3M) in an ultrapure water solution containing various amounts of P(Lys) (0,
0.2, 0.5, 1.0, 2.0, and 5.0 © 10¹3M Lys unit, respectively) at 298K. (b) CD spectra of P(Lys) (1.0 © 10¹3M Lys unit) in an ultrapure
water solution containing various amounts of K[Au(CN)2] (0, 1.0, 2.0, 3.0, 4.0, and 5.0 © 10¹3M, respectively) at 298K. (c) Excitation
(left) and emission (right) spectra of K[Au(CN)2] (5.0 © 10¹3M) with P(Lys) (Lys unit:K[Au(CN)2] = 1:1) in an ultrapure water
solution at 298K.
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Figure 3. (a) Excitation (left) and emission (right) (ex = 280 nm) of K[Au(CN)2] (5.0 © 10¹3M) in an ultrapure water solution
containing various amounts of P(Lys) (0, 1.0, 2.5, 5.0, 10.0, and 25.0 © 10¹3M Lys unit, respectively) at 298K. (b) Emission spectra
(ex = 280 nm) of various amounts of K[Au(CN)2] (1.0, 2.5, 5.0, 10.0, 25.0, 50.0, 75.0, and 150.0 © 10¹4M, respectively) in the
presence of P(Lys) (5.0 © 10¹4M Lys unit) in an ultrapure water solution containing at 298K. (c) Emission spectra (ex = 280 nm) of
K[Au(CN)2] (5.0 © 10¹3M) in an ultrapure water solution containing equimolar concentration of the Lys unit of P(Lys) (MW 500
2000, MW 10005000, MW>8000, and MW 400015000, respectively) at 298K. (d) Solid-state emission spectrum (ex = 340 nm) of
P(Lys)Au at 298K.

842

© 2010 The Chemical Society of JapanChem. Lett. 2010, 39, 841843 www.csj.jp/journals/chem-lett/

http://www.csj.jp/journals/chem-lett/


tion ratio. On the contrary, higher molecular weight P(Lys) (MW
>8000) or P(Lys) (MW 400015000) exhibited a promising
luminescence from aggregated [Au(CN)2]¹. These results sup-
port the above-mentioned results, its means, the P(Lys)-induced
self-association and luminescence of [Au(CN)2]¹.

Addition of 5 molar equivalents of a 0.5M ultrapure water
solution of K[Au(CN)2] to a 0.1M Lys unit ultrapure water
solution of P(Lys) afforded P(Lys)Au as a white precipitate
(Figures 1 and 4a).9 P(Lys)Au exhibited an intense blue
emission with a maximum at 446 nm in a solid state at 298K as
depicted in Figure 3d. Under common UV light,  = 365 nm,
a distinct blue luminescence was observed (Figure 4b). The
quantum yield of P(Lys)Au at room temperature, measured in
an integrating sphere for packed powder samples, is 0.36 using
ex = 340 nm.

In conclusion, poly-L-lysine, P(Lys), bearing multiple
positively charged side chains was performed to serve as a
spatially aligned polymeric scaffold for the aggregation and self-
association of negatively charged [Au(CN)2]¹ through electro-
static and aurophilic bonding interactions, wherein the tunable
luminescence properties of [Au(CN)2]¹ aggregates were dem-
onstrated. The aggregation of negatively charged [Au(CN)2]¹

spatially around the backbone of cationic P(Lys) was found to
stabilize the ¢-sheet structure by suppressing repulsive forces
between the positively charged side chains. Studies on the
application of polypeptide-induced metal ion aggregates includ-
ing functional materials and catalysts are now in progress.
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Figure 4. Photographs of P(Lys)Au (a) under ambient light,
(b) under UV irradiation with black light (365 nm).
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